Name \qquad
Period \qquad
I. Work: Force acting through a \qquad .
a. Equation:

Unit:
b. No movement - \qquad work! Movement must be in the \qquad direction of applied force.
c. Calculate the amount of work to slide a 30 N box 5 m .
II. Power: Rate at which \qquad is done or the amount of work done per unit of \qquad .
a. Equation:

Unit:

b. A 850 N man vs. a 450 N man runs up a flight of stairs 3 m high in 5.0 seconds. How does the work and power compare between the two men?
III. Mechanical Energy is the total amount of \qquad and \qquad in a system.
a. The energy of an object enables it to do \qquad .
b. Energy is measured in \qquad .
c. The two most common forms of mechanical energy:

1. Kinetic energy - Energy in the form of \qquad .
a. The amount of kinetic energy an object has depends on its \qquad and its \qquad .
b. Kinetic energy $=1 / 2$ \qquad x velocity ${ }^{2}$
c. If you double the mass, the kinetic energy \qquad . If you double the velocity, the kinetic energy would \qquad .
d. Calculate the kinetic energy of a 55 kg person running with a speed of $9.0 \mathrm{~m} / \mathrm{s}$.
2. Potential energy - Energy due to \qquad .
a. Potential energy - energy stored by things that are \qquad the ground.
b. The amount of PE an object has depends on its \qquad , the acceleration due to
\qquad and its \qquad . $\mathrm{GPE}=$ \qquad .
c. A 50 kg woman climbs a flight of stairs 6.0 m high. How much gravitational potential energy does she possess when she gets to the top? How much work did she do?

d. Find the velocity of the object at the bottom.

10 m

IV. Conservation of Energy: Energy cannot be \qquad or \qquad .
a. Energy can be \qquad from one form into another.
b. The \qquad energy never changes in a system. Sketch a pendulum in various positions to represent the idea.
c. Equation:
V. Machines: A machine is a device used to \qquad forces or simply to change the \qquad of forces.
a. The concept that underlies every machine is the \qquad of energy.
b. Same amount of work can be done by applying a small force over a long distance as can be done applying a large force over a short distance, since work equals \qquad times \qquad .
c. Increasing \qquad reduces the amount of force needed to do the work.
d. Some machines change the \qquad of the applied force to do the work.
e. Amount of energy the machine transfers to the object cannot be \qquad than the amount of energy transferred to the machine. Some energy transferred is changed to \qquad due to friction. An ideal machine with no \qquad would have the same \qquad input and \qquad output.
f. Mechanical Adavantage (MA). The ratio of output \qquad to input \qquad for a machine. $\mathrm{MA}=$ \qquad . It's basically a measure of much it multiplies \qquad force.
g. Efficiency (E). The ratio of useful work \qquad to total work \qquad . Efficiency = \qquad .
h. A lever is used to lift a heavy load. When a 50 N force pushes one end of the lever down 1.2 m , the load rises 0.2 m . Draw it out and show your work!

1. Calculate the weight of the load.
2. What is IMA of the lever?
i. In raising a 5000 N piano 0.4 m with a pulley system, the workers exert 2000 N of force for every 2 m of rope pulled down.
3. What is the actual mechanical advantage of the pulley system?
4. What is the efficiency of the pulley system?
