	Work and Energy Study Guide		Name	
			Period	
Work	: Force acting through a	·		
a.	Equation:	Unit:		
b.	No movement work!	Movement must be in the	direction of applied force.	
c.	Calculate the amount of work t	o slide a 30 N box 5 m.		
. Powe	er: Rate at which is do	one or the amount of work done	e per unit of	
a.	Equation:	Unit:		
b.	A 850 N man vs. a 450 N man and power compare between t	runs up a flight of stairs 3 m h the two men?	high in 5.0 seconds. How does the wo	
I. Mec	hanical Energy is the total amo	ount ofa	in a system	
a.	The energy of an object enabl	es it to do		
b.	Energy is measured in			
c.	The two most common forms	of mechanical energy:		
	1. Kinetic energy – Ener	gy in the form of		
	a. The amount of	kinetic energy an object has de	pends on its and its	
	b. Kinetic energy	$= \frac{1}{2}$ x velocity ²		
	c. If you double the	ne mass, the kinetic energy	If you double the	
	velocity, the kin	netic energy would		
	d. Calculate the k	inetic energy of a 55 kg person	running with a speed of 9.0 m/s.	
	2. Potential energy – En	ergy due to		
	a. Potential energy	y – energy stored by things that	t are the ground.	
	b. The amount of	PE an object has depends on i	ts, the acceleration due to	
	and it	ts G	PE =	

c. A 50 kg woman climbs a flight of stairs 6.0 m high. How much gravitational potential energy does she possess when she gets to the top? How much work did she do?

d. Find the velocity of the object at the bottom.

IV. Conservation of Energy: Energy cannot be ______ or _____.

- a. Energy can be ______ from one form into another.
- b. The ______ energy never changes in a system. Sketch a pendulum in various positions to represent the idea.
- c. Equation:

V. Machines: A machine is a device used to ______ forces or simply to change the ______ of forces.

- a. The concept that underlies every machine is the ______ of energy.
- b. Same amount of work can be done by applying a small force over a long distance as can be done applying a large force over a short distance, since work equals ______ times ______.
- c. Increasing ______ reduces the amount of force needed to do the work.
- d. Some machines change the ______ of the applied force to do the work.
- e. Amount of energy the machine transfers to the object cannot be ______ than the amount of energy transferred to the machine. Some energy transferred is changed to _____ due to friction. An ideal machine with no ______ would have the same _____ input and _____ output.
- f. Mechanical Adavantage (MA). The ratio of output _____ to input _____ for a machine. MA = _____. It's basically a measure of much it multiplies ______ force.
- g. Efficiency (E). The ratio of useful work ______ to total work ______. Efficiency = ______.
- h. A lever is used to lift a heavy load. When a 50 N force pushes one end of the lever down 1.2 m, the load rises 0.2 m. Draw it out and show your work!
 - 1. Calculate the weight of the load.
 - 2. What is IMA of the lever?
- i. In raising a 5000 N piano 0.4 m with a pulley system, the workers exert 2000 N of force for every 2 m of rope pulled down.
 - 1. What is the actual mechanical advantage of the pulley system?
 - 2. What is the efficiency of the pulley system?